Proton and electron transfer in bacterial reaction centers.

نویسندگان

  • M Y Okamura
  • M L Paddock
  • M S Graige
  • G Feher
چکیده

The bacterial reaction center couples light-induced electron transfer to proton pumping across the membrane by reactions of a quinone molecule Q(B) that binds two electrons and two protons at the active site. This article reviews recent experimental work on the mechanism of the proton-coupled electron transfer and the pathways for proton transfer to the Q(B) site. The mechanism of the first electron transfer, k((1))(AB), Q(-)(A)Q(B)-->Q(A)Q(-)(B), was shown to be rate limited by conformational gating. The mechanism of the second electron transfer, k((2))(AB), was shown to involve rapid reversible proton transfer to the semiquinone followed by rate-limiting electron transfer, H(+)+Q(-)(A)Q(-)(B) ifQ(-)(A)Q(B)H-->Q(A)(Q(B)H)(-). The pathways for transfer of the first and second protons were elucidated by high-resolution X-ray crystallography as well as kinetic studies showing changes in the rate of proton transfer due to site directed mutations and metal ion binding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of the proton pathway in bacterial reaction centers: Inhibition of proton transfer by binding of Zn21 or Cd21 (bacterial photosynthesisyRhodobacter sphaeroidesymetal bindingyproton-coupled electron transfer)

The reaction center (RC) from Rhodobacter sphaeroides converts light into chemical energy through the light induced two-electron, two-proton reduction of a bound quinone molecule QB (the secondary quinone acceptor). A unique pathway for proton transfer to the QB site had so far not been determined. To study the molecular basis for proton transfer, we investigated the effects of exogenous metal ...

متن کامل

Calculated protein and proton motions coupled to electron transfer: electron transfer from QA- to QB in bacterial photosynthetic reaction centers.

Reaction centers from Rhodobacter sphaeroides were subjected to Monte Carlo sampling to determine the Boltzmann distribution of side-chain ionization states and positions and buried water orientation and site occupancy. Changing the oxidation states of the bacteriochlorophyll dimer electron donor (P) and primary (QA) and secondary (QB) quinone electron acceptors allows preparation of the ground...

متن کامل

Exploring the energy profile of the Q(A)(-) to Q(B) electron transfer reaction in bacterial photosynthetic reaction centers: pH dependence of the conformational gating step.

Both large- and small-scale conformational changes are needed as proteins carry out reactions. However, little is known about the identity, energy of, and barriers between functional substates on protein reaction coordinates. In isolated bacterial photosynthetic reaction centers, the electron transfer from the reduced primary quinone, Q(A)(-), to the secondary quinone, Q(B), is rate limited by ...

متن کامل

Identification of the proton pathway in bacterial reaction centers: Replacement of Asp-M17 and Asp-L210 with Asn reduces the proton transfer rate in the presence of Cd21

The reaction center (RC) from Rhodobacter sphaeroides converts light into chemical energy through the reduction and protonation of a bound quinone molecule QB (the secondary quinone electron acceptor). We investigated the proton transfer pathway by measuring the proton-coupled electron transfer, kAB [QA.QB. 1 H13 QA(QBH)] in native and mutant RCs in the absence and presence of Cd21. Previous wo...

متن کامل

Mimicking bacterial photosynthesis

Photosynthesis in bacteria involves absorption of light by antenna chromophores and transfer of excitation to reaction centers, which convert the excitation energy to electrochemical potential energy in the form of transmembrane charge separation. A proton pump uses this stored energy to generate proton motive force across the membrane, which in turn is used to synthesize adenosine triphosphate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1458 1  شماره 

صفحات  -

تاریخ انتشار 2000